ত্রিকোণমিতিক ফাংশন

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত - উচ্চতর গণিত – ১ম পত্র | | NCTB BOOK
1

ত্রিকোণমিতিক ফাংশন (Trigonometric Functions) হলো এমন ধরনের ফাংশন, যা কোণ এবং তার সম্পর্কিত অনুপাত নিয়ে কাজ করে। ত্রিকোণমিতিক ফাংশনগুলো মূলত ডান-কোণযুক্ত ত্রিভুজের বাহুগুলোর অনুপাতের উপর ভিত্তি করে তৈরি হয়। প্রধান ত্রিকোণমিতিক ফাংশনগুলো হলো সাইন (sin), কোসাইন (cos), এবং **ট্যানজেন্ট (tan)**। এদের সঙ্গে সম্পর্কিত অন্যান্য ফাংশনগুলো হলো কোট্যানজেন্ট (cot), সেক্যান্ট (sec), এবং **কোসেক্যান্ট (csc)**।


প্রধান ত্রিকোণমিতিক ফাংশন

১. সাইন (sin): \( \sin(\theta) \) হলো ডান-কোণযুক্ত ত্রিভুজের বিপরীত বাহু (opposite side) এবং অতিভুজ (hypotenuse) এর অনুপাত।
\[
\sin(\theta) = \frac{\text{বিপরীত বাহু}}{\text{অতিভুজ}}
\]

২. কোসাইন (cos): \( \cos(\theta) \) হলো সংলগ্ন বাহু (adjacent side) এবং অতিভুজের অনুপাত।
\[
\cos(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{অতিভুজ}}
\]

  1. ট্যানজেন্ট (tan): \( \tan(\theta) \) হলো বিপরীত বাহু এবং সংলগ্ন বাহুর অনুপাত।
    \[
    \tan(\theta) = \frac{\text{বিপরীত বাহু}}{\text{সংলগ্ন বাহু}}
    \]

সম্পর্কিত ত্রিকোণমিতিক ফাংশন

৪. কোট্যানজেন্ট (cot): \( \cot(\theta) \) হলো সংলগ্ন বাহু এবং বিপরীত বাহুর অনুপাত, যা \( \tan(\theta) \)-এর বিপরীত।
\[
\cot(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{বিপরীত বাহু}} = \frac{1}{\tan(\theta)}
\]

৫. সেক্যান্ট (sec): \( \sec(\theta) \) হলো অতিভুজ এবং সংলগ্ন বাহুর অনুপাত, যা \( \cos(\theta) \)-এর বিপরীত।
\[
\sec(\theta) = \frac{\text{অতিভুজ}}{\text{সংলগ্ন বাহু}} = \frac{1}{\cos(\theta)}
\]

৬. কোসেক্যান্ট (csc): \( \csc(\theta) \) হলো অতিভুজ এবং বিপরীত বাহুর অনুপাত, যা \( \sin(\theta) \)-এর বিপরীত।
\[
\csc(\theta) = \frac{\text{অতিভুজ}}{\text{বিপরীত বাহু}} = \frac{1}{\sin(\theta)}
\]


ত্রিকোণমিতিক ফাংশনের বৈশিষ্ট্য

  • পর্যায়: ত্রিকোণমিতিক ফাংশনগুলো পর্যায়বৃত্তিক (periodic) অর্থাৎ, এগুলো নির্দিষ্ট সময় পরপর পুনরাবৃত্ত হয়।
    • \( \sin(\theta) \) এবং \( \cos(\theta) \)-এর পর্যায় হলো \( 2\pi \)।
    • \( \tan(\theta) \) এবং \( \cot(\theta) \)-এর পর্যায় হলো \( \pi \)।
  • ডোমেন ও রেঞ্জ:
    • \( \sin(\theta) \) এবং \( \cos(\theta) \)-এর ডোমেন হলো সমস্ত বাস্তব সংখ্যা এবং রেঞ্জ হলো \([-1, 1]\)।
    • \( \tan(\theta) \) এবং \( \cot(\theta) \)-এর ডোমেনে কিছু বিশেষ কোণ নিষিদ্ধ থাকে, যেখানে ফাংশনের মান অসীম হয়। এদের রেঞ্জ হলো সমস্ত বাস্তব সংখ্যা।
    • \( \sec(\theta) \) এবং \( \csc(\theta) \)-এর ডোমেনেও কিছু বিশেষ কোণ নিষিদ্ধ থাকে এবং এদের রেঞ্জ হলো \( (-\infty, -1] \cup [1, \infty) \)।

ত্রিকোণমিতিক ফাংশনের ব্যবহার

ত্রিকোণমিতিক ফাংশন বাস্তব জীবনের অনেক ক্ষেত্রে ব্যবহৃত হয়, যেমন:

  • কোণ এবং দূরত্ব নির্ণয়: প্রকৌশল, জ্যোতির্বিজ্ঞান, এবং স্থাপত্যে বিভিন্ন দূরত্ব ও কোণ নির্ণয়ের জন্য।
  • আন্দোলন এবং তরঙ্গ: শব্দ, আলো এবং জল তরঙ্গের গতিবিধি বিশ্লেষণে।
  • পর্যায়বৃত্তিক প্রকৃতি: ঋতু পরিবর্তন, দোলন, এবং জ্যামিতিক পরিমাপের জন্য।

ত্রিকোণমিতিক ফাংশন তাই গণিতে এবং বিজ্ঞানের নানা ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ এবং কার্যকরী।

Promotion